Pakissan.com;
Pakissan.com Home Page Pakissan.com Urdu Edition Home Page
1
  The Web   Pakissan.com  
Main Page
All About /  Live stock /Poultry/Bird Flu

 

Index Bird flu


Avian Influenza - Disease Card  
 

Avian influenza (AI) has been recognised as a highly lethal generalised viral disease of poultry since 1901. In 1955, a specific type of influenza virus was identified as the causal agent of what was then called fowl plague. It has since been found that AI viruses cause a wide range of disease syndromes, ranging from severe to mild, in domestic poultry.


Aetiology

AI viruses are members of the family Orthomyxoviridae. The influenza viruses that constitute this family are classified into types A, B or C based on differences between their nucleoprotein and matrix protein antigens. AI viruses belong to type A. Influenza viruses are further categorised into subtypes according to the antigens of the haemagglutinin (H) and neuraminidase (N) projections on their surfaces. There are 14 haemagglutinin subtypes and 9 neuraminidase subtypes of influenza A viruses, and AI viruses have representatives in all of these subtypes. However, to date all highly pathogenic AI viruses that cause generalised rather than respiratory disease belong to either the H5 or H7 subtypes. For example, the classical fowl plague virus is H7N7 and the virus responsible for the major epidemic in the eastern United States in 1983 84 was H5N2. However, not all H5 and H7 viruses are virulent for poultry.

The pathogenicity of AI viruses is correlated to the ability of trypsin to cleave the haemagglutinin molecule into two subunits. Highly pathogenic strains of H5 and H7 viruses have several amino acid residues at the cleavage site. Trypsin sensitivity and amino acid sequencing can be used diagnostically to determine whether or not an isolated virus is potentially pathogenic.



Natural hosts

Domestic fowl, ducks, geese, turkeys, guinea fowl, quail and pheasants are susceptible. Disease outbreaks occur most frequently in domestic fowl and turkeys. A particular isolate may produce severe disease in turkeys but not in chickens or any other avian species. Therefore, it would be impossible to generalize on the host range for HPAI, for it will likely vary with the isolate. This assumption is supported by reports of farm outbreaks where only a single avian species of several species present on the farm became infected. Many species of wild birds particularly waterbirds and seabirds - are also susceptible, but infections in these birds are generally subclinical.



World Distribution

AI viruses are probably ubiquitous in wild waterbirds. Pathogenic strains could emerge and cause disease in domestic poultry in any country at any time without warning. In fact, outbreaks have occurred at irregular intervals on all continents. The most serious epidemic in recent times was in Hong Kong 1997-1998 and 2003, The Netherlands 2003, South-Korea 2003.


Epidemiology

The immediate source of infection for domestic poultry can seldom be ascertained, but most outbreaks probably start with direct or indirect contact of domestic poultry with waterbirds. Many of the strains that circulate in wild birds are either non-pathogenic or midly pathogenic for poultry. However, a virulent strain may emerge either by genetic mutation or by reassortment of less virulent strains. Scientific evidence indicates that the former mechanism occurredmin 1983-87 in the Eastern United States.

Swine appear to be important in the epidemiology of infection of turkeys with swine influenza virus when they are in close proximity. Other mammals do not appear to be involved in the epidemiology of HPAI. The infection of humans with an H5 avian influenza virus in Hong Hong in 1997 has resulted in a reconsideration of the role of the avian species in the epidemiology of human influenza.

Once AI is established in domestic poultry, it is a highly contagious disease and wild birds are no longer an essential ingredient for spread. Infected birds excrete virus in high concentration in their faeces and also in nasal and ocular discharges. Once introduced into a flock, the virus is spread from flock to flock by the usual methods involving the movement of infected birds, contaminated equipment, egg flats, feed trucks, and service crews, to mention a few. The disease generally spreads rapidly in a flock by direct contact, but on occasions spread is erratic.

Airborne transmission may occur if birds are in close proximity and with appropriate air movement. Birds are readily infected via instillation of virus into the conjunctival sac, nares, or the trachea. Preliminary field and laboratory evidence indicates that virus can be recovered from the yolk and albumen of eggs laid by hens at the height of the disease. The possibility of vertical transmission is unresolved; however, it is unlikely infected embryos could survive and hatch. Attempts to hatch eggs in disease isolation cabinets from a broiler breeder flock at the height of disease failed to result in any AI-infected chickens. This does not mean that broken contaminated eggs could not be the source of virus to infect chicks after they hatch in the same incubator. The hatching of eggs from a diseased flock would likely be associated with considerable risk.




Incubation Period

The incubation period is usually 3 to 7 days, depending upon the isolate, the dose of inoculum, the species, and age of the bird.



Clinical signs

The clinical signs are very variable and are influenced by factors such as the virulence of the infecting virus, species affected, age, sex, concurrent diseases and environment.

In virulent (or highly pathogenic) AI of the type traditionally associated with fowl plague, the disease appears suddenly in a flock and many birds die either without premonitory signs or with minimal signs of depression, inappetence, ruffled feathers and fever. Other birds show weakness and a staggering gait. Hens may at first lay soft-shelled eggs, but soon stop laying. Sick birds often sit or stand in a semi-comatose state with their heads touching the ground. Combs and wattles are cyanotic and oedematous, and may have petechial or ecchymotic haemorrhages at their tips. Profuse watery diarrhoea is frequently present and birds are excessively thirsty. Respiration may be laboured. Haemorrhages may occur on unfeathered areas of skin. The mortality rate varies from 50 to 100%.

In broilers, the signs of disease are frequently less obvious with severe depression, inappetence, and a marked increase in mortality being the first abnormalities observed. oedema of the face and neck and neurological signs such as torticollis and ataxia may also be seen. The disease in turkeys is similar to that seen in layers, but it lasts 2 or 3 days longer and is occasionally accompanied by swollen sinuses. In domestic ducks and geese the signs of depression, inappetence, and diarrhea are similar to those in layers, though frequently with swollen sinuses. Younger birds may exhibit neurological signs.



Vaccination

Inactivated oil-emulsion vaccines, although fairly expensive, have been demonstrated to be effective in reducing mortality, preventing disease, or both, in chickens and turkeys (7). These vaccines may not, however, prevent infection in some individual birds, which go on to shed virulent virus. More economical viable vaccines prepared using naturally avirulent or attenuated strains have the disadvantage of the possible creation of reassortant influenza viruses with unpredictable characteristics. These reassortants could result when a single host bird is simultaneously infected with both the vaccine and another AI virus. Owing to the segmented nature of the influenza virus genome, a reassortment of genetic material can readily occur, creating new influenza viruses.

The basic drawback to any vaccine approach for the control of HPAI is the large number of HA subtypes that can cause the disease. Because there is no cross-protection among the 15 known HA subtypes, either a multivalent vaccine will be needed or vaccination postponed until the prevalent disease-causing subtype in the area is identified. A recombinant fowl pox virus vaccine containing the gene that codes for the production of the H5 antigen has recently been licensed. The use of a recombinant insect virus containing the gene for either the H5 or H7 antigen has been used to make these vaccine proteins in insect cell cultures.



Pathology

Birds that die of peracute disease may show minimal gross lesions, consisting of dehydration and congestion of viscera and muscles.

In birds that die after a prolonged clinical course, petechial and ecchymotic haemorrhages occur throughout the body, particularly in the larynx, trachea, proventriculus and epicardial fat, and on serosal surfaces adjacent to the sternum. There is extensive subcutaneous oedema, particularly around the head and hocks. The carcase may be dehydrated. Yellow or grey necrotic foci may be present in the spleen, liver, kidneys and lungs. The air sace may contain an exudate. The spleen may be enlarged and haemorrhagic.

AI is characterised histologically by vascular disturbances leading to oedema, haemorrhages and perivascular cuffing, especially in the myocardium, spleen, lungs, brain and wattles.Necrotic foci are present in the lungs, liver and kidneys. Gliosis, vascular proliferaion and neuronal degeneration may be present in the brain.



Differential diagnosis

The following diseases must be considered in the differential diagnosis of virulent AI:

Other diseases causing sudden high mortality:

• Newcastle disease

• infectious laryngotracheitis

• duck plague

• acute poisonings


other diseases causing swelling of the combs and wattles:

• acute fowl cholera and other septicaemic diseases

• bacterial cellulitis of the comb and wattles


Less severe forms of the disease may be confused with, or complicated by, many othe diseases with respiratory or enteric signs. AI should be suspected in any disease outbreak in poultry that persists despite the application of preventive and therapeutic measures for other diseases.



Laboratory diagnostic specimens

Specimens required

Specimens should abe collected from at least six birds. Preferably, three should be birds showing signs of the acute disease and the other three may be recently dead.

Bacteriological swabs of tracheal and cloacal contents, brain and heart blood should be collected aseptically. The material collected on the swabs should be mixed into 3mL aliquots of transport medium in sterile bottles and the swabs discarded. The transport medium may be sterile brain-heart infusion both containing 5000 ug of streptomycin per mL, or equal parts of glycerol and phosphate-buffered saline with the same antibiotics added. Tracheal and cloacal swabs should also be collected from selected live birds in the flock.

At autopsy, unpreserved specimens of brain, trachea, spleen and intestinal contents should be collected for isolation of the virus. Impression smears should be made of internal organs, including kidney and pancreas, for detection of viral antigen.

Blood samples should be collected for serum. Samples should be taken from several birds in the flock.

Transport of specimens

Unpreserved tissues and swab material should be chilled and forwarded on water ice or with frozen gel packs. If delays of greater than 48 hours are expected in transit, these specimens should be frozen and forwarded with dry ice.



Laboratory procedures

AI virus is most commonly isolated by inoculation of swab material or tissue homogenates into 9-11-day-old embryonated chicken eggs by the allantoic sac route. The embryos may or may not die, but in any case the presence of the virus can be detected by haemagglutinin tests on harvested allantoic fluid. Its identity is confirmed by agar gel diffusion or haemagglutination inhibition tests using specific antiserum.

Rapid diagnosis can be made by the detection of viral antigen in tissue impression smears using immunofluorescence, or by antigen detection enzyme-linked immunosorbent assay (ELISA) on tissue homogenates. Pancreas and kidney are the organs in which antigen is most often demonstrable.

Isolates of the virus can be serotyped to determine their haemagglutinin and neuraminidase subtypes. Pathogenicity tests are carried out by inoculating 4-6-week-old chickens, intravenoulsy or into the caudal thoracic air sac, with an inoculum prepared from infectious allantoic sac fluid. A pathogenicity index is determined from the number of healthy, sick, paralysed and dead birds observed on each day for 10 days post inoculation. In vitro tests, based on the ability of the virus to produce plaques in cell cultures in the absence of trypsin, are also useful for pathotyping strains of the virus. However, polymerase chain reaction and gene sequencing procedures can be used for rapid determination of the pathogenic potential of an AI virus, and this is an important aspect in determining the role of the virus in the disease seen in the field.

Group-specific antibody can be detected by ELISA in serum samples from birds two weeks or more after they first show clinical signs. Once the subtype of the virus has been identified, haemagglutination inhibition tests can be used to detect specific antibodies.



Source

• Exotic diseases of Animals, a field guide for Australian veterinarians. W.A Geering, A.J. Forman and M.J. Nunn

• Foreign animal diseases, the grey book. Bayer. Committee on Foreign Animal Diseases of the United States Animal Health Association
 


FAO

Pakissan.com;
JOIN US ON FACEBOOK

Main Page | News  | Global News  |  Issues/Analysis  |  Weather  | Crop/ Water Update  |  Agri Overview   |  Agri Next  |  Special Reports  |  Consultancies
All About   Crops Fertilizer Page  |  Farm Inputs  |  Horticulture  |  Livestock/ Fisheries
Interactive  Pak APIN  | Feed Back  | Links
Site Info  
Search | Ads | Pakissan Panel

 

2001 - 2017 Pakissan.com. All Rights Reserved.